Exercise 27

Using the dot product, prove the converse of the Pythagorean theorem. That is, show that if the lengths of the sides of a triangle satisfy $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Solution

Suppose there's a triangle formed by vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} with magnitudes $\|\mathbf{a}\|=a,\|\mathbf{b}\|=b$, and $\|\mathbf{c}\|=\sqrt{a^{2}+b^{2}}$, respectively.

From this figure, $\mathbf{a}=\mathbf{b}+\mathbf{c}$, which means

$$
\mathbf{c}=\mathbf{a}-\mathbf{b}
$$

Square both sides.

$$
\begin{aligned}
& \mathbf{c} \cdot \mathbf{c}=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
\|\mathbf{c}\|^{2} & =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b} \\
& =\|\mathbf{a}\|^{2}-2(\mathbf{a} \cdot \mathbf{b})+\|\mathbf{b}\|^{2} \\
& =\|\mathbf{a}\|^{2}-2\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta+\|\mathbf{b}\|^{2}
\end{aligned}
$$

θ represents the angle between \mathbf{a} and \mathbf{b}. Substitute the magnitudes on both sides.

$$
a^{2}+b^{2}=a^{2}-2 a b \cos \theta+b^{2}
$$

Solve for $\cos \theta$.

$$
\begin{gathered}
0=-2 a b \cos \theta \\
\cos \theta=0
\end{gathered}
$$

Therefore, $\theta=\pi / 2$, and the triangle is a right triangle.

